Abstract

Mycorrhizae are ubiquitous symbiosis which can mediate uptake of some plant nutrients. In polluted soils they could be of great importance in heavy metal availability and toxicity to plants. Mycorrhizae have also been reported to protect plants against toxic metals. We investigated the occurrence and infectivity of arbuscular mycorrhizal (AM) spores as affected by heavy metal levels and other soil properties in Norwegian soils collected from heavy metal polluted, high natural background and non-polluted areas. Spore numbers, mycorrhizal infectivity and spore germination of indigenous mycorrhizal fungi and of a reference strain (Glomus mosseae) in soils showed lower values in two soils with high metal concentrations and in one soil with a low pH. Mycorrhizal infectivity was negatively correlated with extractable metals. Spore number and mycorrhizal infectivity in a soil with naturally high heavy metal content were not different to in non-polluted soils, and indigenous AM fungi appeared more tolerant to metals than those in non-polluted soils. Mycorrhizal infectivity, expressed as MSI50 values, was significantly correlated (r′=0.89, P< 0.05) with the percentage of germinating G. mosseae spores in the soils. However, the number of spores per volume of soil was not significantly correlated with infectivity or spore germination of the reference strain. The spore germination method is discussed as a bioassay of heavy metal toxicity in soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call