Abstract

A pot experiment was conducted to test the effect of three microbial regimes on the time course of heavy metal uptake in clover and maize from an industrially polluted soil. The three treatments included: (1) an intact flora of bacteria and fungi, including indigenous arbuscular mycorrhizal (AM) fungi together with soil microfauna; (2) the indigenous bacterial/fungal flora except AM fungi, reintroduced into sterilized soil; or (3) the same bacterial/fungal flora plus an AM fungus. For the final harvest, two pot sizes were included to assess the effect of root density. Plant uptake of P and heavy metals varied according to plant species, harvest time and soil treatment. For both plant species, shoot concentration of Zn, Cd and Cu decreased and Ni increased with plant age. Plants growing in sterilized soil with reintroduced AM fungi generally grew better, but contained higher concentrations of heavy metals than those colonized by indigenous AM fungi. Plants with mycorrhiza frequently contained more P, Zn, Cd, Cu and Pb in roots and shoots compared to nonmycorrhizal plants. Elevated root/shoot concentration ratios of P and metals indicate a sequestration of metal phosphates in mycorrhizal roots. Mycorrhizal performance was influenced by root density. At low root densities, metal concentrations in mycorrhizal plants were reduced, whereas it had no effect at high root densities when the entire soil volume was efficiently exploited by roots. We conclude that root density data are essential for interpretations of the influence of AM on metal uptake in plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call