Abstract

Multidrug-resistant (MDR) Escherichia coli isolates (n=50) were recovered from aquatic ecosystems, which presented high counts of E. coli and metal values within the recommended range. These isolates showed different multidrug resistance profiles, highlighting the resistance to extended-spectrum cephalosporins, polymyxins, and fluoroquinolones. Several antimicrobial resistance genes (ARGs) were found, spotlighting the presence of at least one β-lactamase-encoding gene in each E. coli isolate. Substitutions in the quinolone resistance-determining regions and the two-component systems involving PhoP/PhoQ and PmrA/PmrB were also found. The metal tolerance gene rcnA (nickel and cobalt efflux pump) was the most prevalent. In this regard, 94% of E. coli isolates presented the co-occurrence of at least one ARG and metal tolerance gene. Furthermore, virulence genes and genetic diversity were found among MDR E. coli isolates. The emergence of potentially pathogenic isolates exhibiting multidrug resistance and metal tolerance emerged as a global health problem at the human-animal-environment interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.