Abstract

Acinetobacter calcoaceticus-Acinetobacter baumannii complex is considered one of the main causes of hospital-acquired infections. Acinetobacter seifertii was recently characterized within this complex and it has been described as an emergent pathogen associated with bacteremia. The emergence of multidrug-resistant (MDR) bacteria, including Acinetobacter sp., is considered a global public health threat and an environmental problem because MDR bacteria have been spreading from several sources. Therefore, this study aimed to characterize an environmental MDR A. seifertii isolate (SAb133) using whole genome sequencing and a comparative genomic analysis was performed with A. seifertii strains recovered from various sources. The SAb133 isolate was obtained from soil of a corn crop field and presented high MICs for antimicrobials and metals. The comparative genomic analyses revealed ANI values higher than 95% of relatedness with other A. seifertii strains than A. calcoaceticus-A. baumannii complex. Resistome and virulome analyses were also performed and showed different antimicrobial resistance determinants and metal tolerance genes as well as virulence genes related to A. baumannii known virulence genes. In addition, genomic islands, IS elements, plasmids and prophage-related sequences were detected. Comparative genomic analysis showed that MDR A. seifertii SAb133 had a high amount of determinants related to antimicrobial resistance and tolerance to metals, besides the presence of virulence genes. To the best of our knowledge, this is the first report of a whole genome sequence of a MDR A. seifertii isolated from soil. Therefore, this study contributed to a better understanding of the genetic relationship among the few known A. seifertii strains worldwide distributed.

Highlights

  • Acinetobacter spp. are non-fermenting Gram-negative bacilli (NFGNB) ubiquitous in the environment and considered one of the main causes of hospital-acquired infections

  • Due to the importance of emerging environmental pathogens, this study aimed to characterize an environmental MDR A. seifertii isolated from soil and compare it through the whole genome sequencing with previously described A. seifertii strains obtained from different sources

  • The SAb133 isolate was classified as MDR since it presented resistance to ≥1 antimicrobial in ≥3 categories

Read more

Summary

Introduction

Acinetobacter spp. are non-fermenting Gram-negative bacilli (NFGNB) ubiquitous in the environment and considered one of the main causes of hospital-acquired infections. A. seifertii has been described as an emergent pathogen, being reported in different human infections, including bacteremia (Cayô et al, 2016; Kishii et al, 2016; Yang et al, 2016). Multidrug-resistant (MDR) bacteria, including Acinetobacter sp., carrying antimicrobial resistance genes (ARGs) have been reported worldwide from different sources, such as soil and water (Hrenovic et al, 2017; Furlan et al, 2018; Higgins et al, 2018; Furlan and Stehling, 2019). Bacterial resistance to antimicrobials has been considered a global public health and an environmental problem since soil and water sources are described as potential reservoirs and disseminators of antimicrobial-resistant bacteria as well as their ARGs, which is worrying (Berendonk et al, 2015). Due to the importance of emerging environmental pathogens, this study aimed to characterize an environmental MDR A. seifertii isolated from soil and compare it through the whole genome sequencing with previously described A. seifertii strains obtained from different sources (i.e., human, animal, and environment)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call