Abstract

The occurrence and fate of carbonyl compounds as ozonation by-products at a full scale drinking water treatment plant (DWTP) were studied for one year. Raw water and samples after the main treatment processes (pre-ozonation, coagulation/flocculation, sand filtration, main ozonation, filtration through granular activated carbon and chlorination) were collected on a monthly basis. Pre-ozonation led to the formation of carbonyl compounds at concentrations of 67.3±43.3μg/l as sum of 14 carbonyl compounds whereas lower concentrations were determined after the main ozonation process, 32.8±22.3μg/l. The dominant compounds were formaldehyde, acetaldehyde, glyoxal and methyl glyoxal contributing to 65% of total carbonyl content. The DOC reactivity in formation of carbonyl compounds varied through the year exhibiting the higher values in spring. Coagulation/flocculation and sand filtration significantly removed (64–80%) the carbonyl compounds formed at the pre-ozonation step. The removal efficiency of filtration through granular activated carbon showed great variation ranging from 15 to 62%. Finally, the concentrations of carbonyl compounds in finished water were low, close to detection limits, revealing the efficiency of DWTP in the removal of this class of ozonation by-products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call