Abstract

Investigation of microplastic contamination in riverbed sediments can help clarify long-term microplastic pollution and establish prevention measures in watersheds. However, little research has been conducted on riverbed sediment pollution on the Loess Plateau, a highly eroded area in Northwest China. This research investigates the Yan River as a case study. The occurrence and distribution of microplastics were surveyed and analyzed to explore the microplastic pollution in the riverbed of the Loess Plateau. Microplastics were found in all sediment samples, with an abundance of 208.89–686.67 items kg−1. Polypropylene and polyethylene were the main microplastic components identified using Fourier transform infrared spectrometry and imaging systems. Particles 0.5–1.0 mm in size accounted for 38.5 % of the total microplastics in this region. The main microplastic colors were black, white, and transparent, which accounted for 40.75 %, 20.75 %, and 20.38 % of the total microplastics, respectively. There was an increasing trend in the microplastic abundance in sediments in the downstream direction that accompanied the increase in population density from 55.31 persons km−2 upstream to 230.05 persons km−2 downstream. Microplastic pollution was related to the complex geographical, semiarid monsoon climate, elevation, grassland, per capita GDP, and anthropogenic factors in the Yan River basin. The erodible loess and high-intensity rainstorm promoted severe soil erosion, which caused microplastics absorbed in the soil to migrate to the river. Poorly managed solid wastes, such as agricultural mulch, plastic bottles, and other plastic products are also sources of microplastics in the riverbed. This study further clarifies microplastic pollution in typical rivers of highly erosive areas and provides useful information for basin management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call