Abstract

In this study, estuarine water samples were collected at diverse hot spots in Miri River Estuary, East Malaysia to appraise the geochemical processes, which controls the river water quality. The collected water samples were analysed for various physicochemical parameters (insitu parameters, nutrients, major ions and trace metals), including stable isotopes (oxygen and hydrogen). Suspended solids are also extracted from the water samples and analysed for trace metals. Standard graphs, Piper plot, Gibbs diagram, water quality indices, geochemical modelling and statistical analysis were used for the data analysis. The acquired water quality data was compared with national and international guidelines for the suitability of water for various purposes. Interpretation of data reveals that the estuarine water quality is deemed unsuitable to be used for both drinking and irrigation purposes. Overall, the elemental concentrations are increasing from downstream to river mouth. Based on pollution indices (HEI and Cd), downstream region shows high vulnerability to metal pollution due to anthropogenic disturbance. Isotope values of river water indicate direct atmospheric precipitation with minimal evaporation. Factor analysis reveals that seawater influx, urban pollution, domestic and agricultural discharges at the downstream region are the main controlling factors to the river water quality. It is also deduced that suspended solids play a vital role in the adsorption and desorption of trace metals in the estuarine water. The outcome of this study provides a comprehensive information on pollution status of Miri estuary, which helps the policy makers to practice sustainable management of this water resource for Miri community.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call