Abstract

Mechanical alloying was performed to obtain a composite material with a homogeneous dispersion of silver particles in a poly(vinyl alcohol) (PVA) matrix. Silver is a bactericidal material, and PVA is a widely used biocompatible polymer. Therefore, this mix can lead to a potentially functional biomaterial. This study focuses on the combination of both materials, processed by mechanical alloying, which has a promising application potential. The silver (Ag) used was ultrafine, measuring between 200 and 400 nanometers, produced from silver nitrate (AgNO3) redox. The Attritor high–energy, water–cooled ball mill was used to mill PVA for 4 h, at 600 rpm speed rotation and 38:1 power milling. Mechanical alloying was demonstrated to cause particle refinement in PVA with a timespan of 1 h. A slight additional particle decrease occurred for long–time milling. A milling time of 4 h was used to disperse the silver particles in the polymer matrix homogeneously. Hot pressing films were produced from the obtained dispersion powders. The microstructural features were studied using several material characterization techniques. Antimicrobial Susceptibility Tests (AST), conducted in an in–vitro assay, showed a hydrophilic character of the films and a protection against bacterial growth, making the process a promising path for the production of surface protective polymeric films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call