Abstract

Characterization efforts of core/shell and core/multishell nanocrystals have struggled to quantitatively evaluate the interface width between the core and shell materials despite its importance in their optoelectronic properties. Here, we demonstrate a scanning transmission electron microscopy (STEM) method for measuring the radial elemental composition of two spherical core/shell nanocrystal systems, Ge/Si core/shell and CdSe/CdS/ZnS core/double-shell nanocrystals. By fitting model-based radial distributions of elements to measured STEM–energy-dispersive X-ray (EDX) maps, this method yields reliable and accurate measurements of interface broadening as well as core and shell sizes, surface roughness, and the fraction of core material in the shell. The direct evaluation of the structural parameters is an important step toward improving the synthesis of core/shell nanocrystals and optimizing their optoelectronic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.