Abstract

The sieve bootstrap (SB) prediction intervals for invertible autoregressive moving average (ARMA) processes are constructed using resamples of residuals obtained by fitting a finite degree autoregressive approximation to the time series. The advantage of this approach is that it does not require the knowledge of the orders, p and q, associated with the ARMA(p, q) model. Up until recently, the application of this method has been limited to ARMA processes whose autoregressive polynomials do not have fractional unit roots. The authors, in a 2012 publication, introduced a version of the SB suitable for fractionally integrated autoregressive moving average (FARIMA (p,d,q)) processes with 0<d<0.5 and established its asymptotic validity. Herein, we study the finite sample properties this new method and compare its performance against an older method introduced by Bisaglia and Grigoletto in 2001. The sieve bootstrap (SB) method is a numerically simpler alternative to the older method which requires the estimation of p, d, and q at every bootstrap step. Monte-Carlo simulation studies, carried out under the assumption of normal, mixture of normals, and exponential distributions for the innovations, show near nominal coverages for short-term and long-term SB prediction intervals under most situations. In addition, the sieve bootstrap method yields better coverage and narrower intervals compared to the Bisaglia–Grigoletto method in some situations, especially when the error distribution is a mixture of normals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call