Abstract
Hysteretic quantile autoregressive model combines the hysteretic patterns and quantile autoregression, which can capture the dynamic relationship and nonlinear characteristics at different quantiles in time series data. In this paper, the Bayesian quantile inference and order shrinkage are studied for a class of hysteretic quantile autoregressive time series models. By using Markov Chain Monte Carlo (MCMC) techniques, the proposed Bayesian quantile method can handle the sparse hysteretic quantile autoregressive model well. It can accurately determine order of the model and estimate non-zero coefficients. Both simulation studies and a data example show that the proposed methods are feasible, reliable and appropriate for analysing the US Gross National Product data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.