Abstract

An automated guided vehicle (AGV) obstacle avoidance system based on the grid method and deep learning algorithm is proposed, aiming at the complex and dynamic environment in the industrial workshop of a tobacco company. The deep learning object detection is used to detect obstacles in real-time for the AGV, and feasible paths are generated by the grid method, which ultimately finds an AGV obstacle avoidance solution in complex dynamic environments. The experimental results showed that the proposed system can effectively identify and avoid obstacles in a simulated tobacco production workshop environment, resulting in the average obstacle avoidance success rate of 98.67%. The transportation efficiency of cigarette factories is significantly improved with the proposed system, reducing the average execution time of handing tasks by 27.29%. This paper expects to provide a reliable and efficient solution for AGV obstacle avoidance in real-world industrial workshops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.