Abstract
We demonstrated a method to achieve the two-photon subwavelength effect of true broadband chaotic light in polarization-selective Michelson interferometer based on two-photon absorption detection. To our knowledge, it is the first time that this effect has been observed with broadband chaotic light. In theory, the two-photon polarization coherence matrix and probability amplitudes matrix are combined to develop polarized two-photon interference terms, which explains the experimental results well. To make better use of this interferometer to produce the subwavelength effect, we also make a series of error analyses to find out the relationship between the visibility and the degree of polarization error. Our experimental and theoretical results contribute to the understanding of the two-photon subwavelength interference, which shed light on the development of the two-photon interference theory of vector light field based on quantum mechanics. The characteristic of the two-photon subwavelength effect have significant applications in temporal ghost imaging, such as it helps to improve the resolution of temporal objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.