Abstract

There exists a fundamental dimensional mismatch between the Hong-Ou-Mandel (HOM) interferometer and two-photon states: while the latter are represented using two temporal (or spectral) dimensions, the HOM interferometer allows access to only one temporal dimension owing to its single delay element. We introduce a linear two-photon interferometer containing two independent delays spanning the two-photon state. By unlocking the fixed phase relationship between the interfering two-photon probability amplitudes in a HOM interferometer, one of these probability amplitudes now serves as a delay-free two-photon reference against which the other beats, thereby resolving ambiguities in two-photon state identification typical of HOM interferometry. We discuss the operation of this phase-unlocked HOM on a variety of input states focusing on instances where this new interferometer outperforms a traditional HOM interferometer: frequency-correlated states and states produced by a pulse doublet pump. Additionally, this interferometer affords the opportunity to synchronize two-photon states in a manner analogous to an HOM interferometer; moreover, it extends that capability to the aforementioned class of states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.