Abstract

A ground-based multichannel microwave radiometer (GMR) is commonly used to observe the atmospheric radiation brightness temperature (TB) in order to retrieve atmospheric temperature and humidity profiles. At present, GMRs are used only in meteorology and climate monitoring. However, theoretical analysis showed that GMRs can be also used to observe the solar radiation. Therefore, we tried to improve the antenna servo control system of a GMR so that it could track and observe the sun, and the results showed that the GMR could respond to the variation of solar radiation. A further question was: can a GMR observe the variation of the sun during a solar eclipse? Fortunately, two solar eclipse events were captured by the GMR on 26 December 2019 and 21 June 2020 in Xi’an, China. We used the upgraded GMR to observe the variation of solar radiation during the two solar eclipses. The observation and analysis results showed that (1) the GMR could accurately track the sun and respond to the variation of solar radiation during the solar eclipse. We analyzed the variation features of the solar radiation by combining the solar phase during the two solar eclipses. (2) We found that the GMR could respond to the variation of the solar radiation arising from the Earth–Sun distance, and we further propose a novel method to measure the eccentricity of earth orbit with the GMR by using the passive solar observation. The results show that the eccentricity measured was 0.0169, which agreed quite well with the value of 0.0167 in the literature. (3) The average variation percentages of both the Earth–Sun distance and the intensity of the incident solar radiation throughout the year were estimated to be 3.44% and 6.6%, respectively. According to these results, the solar observation techniques can broaden the field usage of GMR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call