Abstract

Electro-redox-induced heterogeneous fluorescence of an individual single-layer graphene sheet was observed in real time by a total internal reflection fluorescence microscope. It was found that the fluorescence intensity of an individual sheet can be tuned reversibly by applying periodic voltages to control the redox degree of graphene sheets. Accordingly, the oxidation and reduction kinetics of an individual single-layer graphene sheet was studied at different voltages. The electro-redox-induced reversible variation of fluorescence intensity of individual sheets indicates a reversible band gap tuning strategy. Furthermore, correlation analysis of redox rate constants on individual graphene sheets revealed a redox-induced spatiotemporal heterogeneity or dynamics of graphene sheets. The observed controllable redox kinetics can rationally guide the precise band gap tuning of individual graphene sheets and then help their extensive applications in optoelectronics and devices for renewable energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.