Abstract

This article addresses the output-feedback decentralized control issue for the fractional-order nonlinear large-scale nonstrict-feedback systems with states immeasurable and unknown dead zones. The unknown nonlinear functions are identified by neural networks (NNs), and immeasurable states are estimated by establishing an NNs' decentralized state observer. The algebraic loop issue is solved by using the property of NN basis functions and designing the fractional-order adaptation laws. In addition, the fractional-order dynamic surface control (FODSC) design technique is introduced in the adaptive backstepping control algorithm to avoid the issue of ``explosion of complexity.'' Then, by treating the nonsymmetric dead zones as the time-varying uncertain systems, an adaptive NNs' output-feedback decentralized control scheme is developed via the fractional-order Lyapunov stability criterion. It is proven that the controlled fractional-order systems are stable, and the tracking and observer errors can converge to a small neighborhood of zero. Two simulation examples are given to confirm the validity of the put forward control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.