Abstract

This article studies the adaptive fuzzy output-feedback decentralized control problem for the fractional-order nonlinear large-scale systems. Since the considered strict-feedback systems contain unknown nonlinear functions and unmeasurable states, the fuzzy-logic systems (FLSs) are used to model unknown fractional-order subsystems, and a fuzzy decentralized state observer is established to obtain the unavailable states. By introducing the dynamic surface control (DSC) design technique into the adaptive backstepping control algorithm and constructing the fractional-order Lyapunov functions, an adaptive fuzzy output-feedback decentralized control scheme is developed. It is proved that the decentralized controlled system is stable and that the tracking and observer errors are able to converge to a neighborhood of zero. A simulation example is given to confirm the validity of the proposed control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.