Abstract

This paper addresses the stabilization problem of linear time-varying delay systems with unmeasurable states. A novel augmented Lyapunov–Krasovskii functional (LKF) is proposed that effectively accounts for the impact of time delays, and an observer based stabilization controller is developed employing linear matrix inequality (LMI) based optimization technique. The utilization of extended reciprocally convex matrix inequality (ERCMI) is employed in this work to establish less conservative stabilization conditions within the framework of linear matrix inequalities (LMIs). By formulating a convex optimization problem, the observer gain and controller gains are determined. Simulation results are used to validate the design, and two numerical examples are considered to prove the usefulness of the proposed method over existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.