Abstract
Sliding mode control has been used extensively in robotics to cope with parametric uncertainty and hard nonlinearities, in particular for time-delay teleoperators, which have gained gradual acceptance due to technological advancements. However, since the slave teleoperator is in contact with a rigid environment, the slave controller requires a free of chattering control strategy, thus making first order sliding mode teleoperation control unsuitable. As an alternative, chatter free, higher-order sliding mode teleoperator control is proposed in this paper to guarantee robust tracking under unknown constant time delay. Moreover, complete order observers are proposed to avoid measurement of velocity and acceleration, along with a formal closed-loop stability proof of the observer-based controller. Experimental results are presented and discussed, which reveals the effectiveness of the proposed teleoperation scheme.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have