Abstract

This article investigates the issue of observer-based security control for the interconnected semi-Markovian jump systems with completely unknown and uncertain bounded transition probabilities (TPs). Considering the limited bandwidth of communication network in each subsystem, an adaptive event-triggered mechanism (AETM) is developed to relieve more network burden than the conventional event-triggered mechanism (ETM), where the designed adaptive law can dynamically adjust the triggering threshold. In addition, two Bernoulli distributed variables are utilized to describe the influence of denial-of-service (DoS) attacks and false-data injection (FDI) attacks in the proposed observer-based security control strategy. Moreover, some sufficient criterions are derived for the stochastic stability with an H∞ attenuation level of augmented systems. Meanwhile, the observer and controller gain matrices can be attained simultaneously with the help of linear matrix inequalities (LMIs). Finally, we provide a practical example to demonstrate the effectiveness of theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call