Abstract
An observer based Restricted Structure Generalized Predictive Control (RS-GPC) algorithm is proposed. The novel feature is to assume the state-observer within the feedback loop is of reduced order. The aim is to inherit the natural robustness of low-order controllers and to provide a solution that may be easily simplified for real-time implementation. The nonlinear discrete-time, multivariable plant model is represented by a state-space system that may be in Linear Parameter Varying or State-Dependent forms. The controller gains are computed to minimize the type of cost-function that is found in traditional model predictive control but with some additional terms that enable gain magnitudes and the rate of change of control gains to be minimized. The cost-function also includes dynamically weighted tracking-error and control signal costing terms. The optimal controller includes a reduced order observer and a time-varying control gain matrix within the loop and background processing for the gain computations. Hard constraints may be imposed on the gain and rate of change of gain and on the control and output signals. Copyright (C) 2020 The Authors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.