Abstract

This paper proposes an observer-based quantized controller for parabolic partial differential equation systems interconnected by a nonlinear coupling protocol. First, a Markov jump model is introduced to describe various randomly occurring actuator failures, and an observer-based pointwise controller is designed under the averaged measurement scheme. Furthermore, taking into account the limitation of network communication resources, a quantization method is adopted to relieve bandwidth pressure. In addition, stability conditions of the closed-loop system with ℋ∞ disturbance attenuation performance are derived by utilizing appropriate Lyapunov functional and inequality techniques. Ultimately, the proposed method is applied to the Fisher equation to verify its feasibility and effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.