Abstract

This article presents an observer-based adaptive sliding mode controller for a fully-actuated hexacopter unmanned aerial vehicle, designed for trajectory tracking in a perturbed environment while carrying a cable-suspended payload. Based on the unavailability of a payload swing sensor, an extended high-gain observer is designed to provide full-state and disturbance estimation including payload motion. Such disturbances are compensated into the control loop to dampen the oscillations, thus improving the flight performance of the hexacopter driven by the adaptive control, providing robustness against bounded perturbations and chattering reduction. The stability analysis of the observer-based controller is guaranteed through Lyapunov theory. Simulations using a multibody emulator demonstrate time reduction in payload dampening while controlling the aircraft trajectory, compared to a feedback regulation-based adaptive controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.