Abstract

This article investigates an adaptive tracking control problem for a six degrees of freedom (6-DOF) nonlinear quadrotor unmanned aerial vehicle (UAV) with a variable payload mass. The changing payload introduces time-varying parametric uncertainties into the dynamical model, rendering a static control strategy no longer effective. To handle this issue, two adaptive schemes are developed to maintain the uncertainties in the translational and rotational dynamics. Initially, a virtual proportional derivative (PD) is designed to stabilize the horizontal position; however, due to an unknown and time-varying mass, an adaptive controller is proposed to generate the total thrust of the UAV. Furthermore, an adaptive controller is designed for the rotational dynamics, to handle parametric uncertainties, such as inertia and external disturbance parameters. In both schemes, a standard adaptive scheme using the certainty equivalence principle is extended and designed. A stability analysis was conducted with rigorous analytical proofs to show the performance of our proposed controllers, and simulations were implemented to assess the performance against other existing methods. Tracking fitness and total control efforts were calculated and compared with closed-loop adaptive tracking control (CLATC) and adaptive sliding mode control (ASMC). The results indicated that the proposed design better maintained UAV stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.