Abstract

Work presented here addresses the issue of grain accretion, an essential yet poorly understood process in planetary system formation, linking the dynamically modeled steps of temperature-dependent condensation of gases after proto-sun gravitational collapse to coalescence of kilometer-size planetesimals into planets. The mechanism for grain accretion has proven difficult to model dynamically. Here, we attempt to test the thesis that the accretion process is electrostatically-driven by non-uniform charging of grains in a low discharge/weak field environment equivalent to periodic conditions in protoplanetary nebulae during solar discharge events such as flares. We simulate in the laboratory the behavior of grains in relationship to surfaces in such an environment. The nature of the observed disaggregation, repulsion, and acceleration of grains away from initial surfaces, and their reaggregation as coatings on surrounding oppositely charged surfaces, provide an empirical experimental basis for an electrostatically-driven model for grain behavior and accretion. Similar weak discharge processes in the protoplanetary disk solar nebula could give rise to increased grain acceleration and collisional compression induced surface coating, necessary conditions for increased accretion. The frequency, timing, and level of energetic output of the proto-sun would influence the effectiveness of such processes in developing stable aggregates, and the nature of the solar system that would result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.