Abstract

AbstractMonthly surface relative humidity (RH) data for 71 stations in the Tibetan Plateau (TP) provided by the National Meteorological Information Center/China Meteorological Administration are compared with corresponding grid points from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR hereafter) reanalysis. Mean climatologies, interannual variabilities, and trends calculated by the Mann‐Kendal method are analyzed during 1961–2013. The annual regional long‐term mean surface RH is 55.3%, with a clear maximum in summer (66.4%) and minimum in winter (44.9%). Compared with observations, NCEP/NCAR overestimates RH in all seasons, especially in spring (18.2%) and winter (17.8%). Mean annual regional surface RH has decreased by −0.23% decade−1 and even more rapidly in summer (−0.60% decade−1) and autumn (−0.39% decade−1). The reduction of surface RH is also captured by the NCEP/NCAR reanalysis at the surface, 400, 500, and 600 hPa. A particularly sharp reduction of RH since the mid‐1990s is evident in both data sets, in line with rapid warming over the plateau. This suggests that moisture supply to the plateau from the Arabian Sea and the Bay of Bengal is limited and that variability and trends of surface RH over the TP are not uniquely driven by the Clausius‐Clapeyron relationship.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.