Abstract
Compound extreme events can cause serious impacts on both the natural environment and human beings. This work aimed to explore the changes in compound drought–heatwave and heatwave–extreme precipitation events (i.e., CDHEs and CHPEs) across China using daily-scale gauge-based meteorological observations, and to examine their future projections and potential risks using the Coupled Model Intercomparison Project (CMIP6) under the shared socioeconomic pathway (SSP) scenarios (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5). The results show the following: (1) The frequencies of CDHEs and CHPEs across China showed a significant increasing trend from 1961 to 2020, with contrasting trends between the first half and second half of the period (i.e., a decrease from 1961 to 1990 and an increase from 1991 to 2020). Similar trends were observed for four intensity levels (i.e., mild, moderate, severe, and extreme) of CDHEs and CHPEs. (2) All the frequencies under three SSP scenarios will show increasing trends, especially under higher emission scenarios. Moreover, the projected intensities of CDHEs and CHPEs will gradually increase, especially for higher levels. (3) The exposure of the population (POP) and Gross Domestic Product (GDP) will be concentrated mainly in China’s coastal areas. The GDP exposures to the CDHEs and CHPEs will reach their highest values for SSP5-8.5, while the POP exposure will peak for SSP2-4.5 and SSP5-8.5, respectively. Our findings can offer scientific and technological support to actively mitigate future climate change risks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have