Abstract

New measurements of the intensity and spectrum of cosmic ray nitrogen nuclei made by instruments flown on balloons and on the Pioneer-8 space probe are reported. The nitrogen spectrum is found to be identical with that of the other medium nuclei, carbon and oxygen, over the range of measurement from 100 MeV/nuc to > 22 GeV/nuc. The ratio of N to all M nuclei is found to be =0.125, constant to within 10% over this energy range. This ratio is extrapolated to the cosmic-ray source using the most recently obtained abundances of oxygen and heavier nuclei and fragmentation parameters for the production of nitrogen from these nuclei. Taking an average material path length of 4 g/cm2 of hydrogen constant with energy, as required to make the abundance of L nuclei →0 at the cosmic-ray source, the resulting N/M source ratio is ≤0.03. In other words, to the same degree that the so-called L nuclei are absent in the cosmic-ray sources, N nuclei are also absent. This nitrogen abundance is therefore different from the estimated solar atmospheric abundance of ∼0.10 for the N/M ratio which is believed to represent the integrated effects of nucleo-synthesis in the galaxy at the time of the formation of the sun. Nevertheless under certain conditions in the CNO bi-cycle that operates for the production of nitrogen in stellar objects a negligible production of nitrogen might be expected. It is suggested that these conditions exist in the cosmic-ray sources. The C/O ratio of 0.9 deduced for cosmic-ray sources is compatible with the observed low nitrogen abundance arising in this CNO bi-cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call