Abstract

Very fast interface traps have recently been suggested to be the main cause behind poor channel-carrier mobility in SiC metal–oxide–semiconductor field effect transistors. It has been hypothesized that the NI traps are defects located inside the SiO2 dielectric with energy levels close to the SiC conduction band edge and the observed conductance spectroscopy signal is a result of electron tunneling to and from these defects. Using aluminum nitride and aluminum oxide as gate dielectrics instead of SiO2, we detect NI traps at these SiC/dielectric interfaces as well. A detailed investigation of the NI trap density and behavior as a function of temperature is presented and discussed. Advanced scanning transmission electron microscopy in combination with electron energy loss spectroscopy reveals no SiO2 at the interfaces. This strongly suggests that the NI traps are related to the surface region of the SiC rather than being a property of the gate dielectric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call