Abstract

The intermittent turbulent transport in the scrape-off-layer (SOL) of Alcator C-Mod [I.H. Hutchinson, R. Boivin, P.T. Bonoli et al., Nucl. Fusion 41, 1391 (2001)] is studied experimentally by imaging with a very high density of spatial measurements. The two-dimensional structure and dynamics of emission from a localized gas puff are observed, and intermittent features (also sometimes called “filaments” or “blobs”) are typically seen. The characteristics of the spatial structure of the turbulence and their relationship to the time-averaged SOL profiles are discussed and compared with those measured on the National Spherical Torus Experiment [M. Ono, S. M. Kaye, Y.-K. M. Pong et al., Nucl. Fusion 40, 557 (2000)]. The experimental observations are compared also with three-dimensional nonlinear numerical simulations of edge turbulence. Radial profiles of the poloidal wave number spectra and the poloidal scale length from the simulations are in reasonable agreement with those obtained from the experimental images, once the response of the optical system is accounted for. The resistive ballooning mode is the dominant linear instability in the simulations. The ballooning character of the turbulence is also consistent with fluctuation measurements made at the inboard and outboard midplane, where normalized fluctuation levels are found to be about 10 times smaller on the inboard side. For discharges near the density limit, turbulent structures are seen on closed flux surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.