Abstract

We used a simple energy balance equation, and estimates of the cross‐shore energy flux carried by progressive surf beat, to calculate the rate of net surf beat forcing (or dissipation) on a beach near Duck, North Carolina. Far inside the surf zone, surf beat dissipation exceeded forcing. Outside the surf zone, surf beat forcing exceeded dissipation. When incident waves were large, surf beat dissipation inside the surf zone and forcing just outside the surf zone were both very strong (the surf beat energy dissipated in the surf zone in a single beat period was of the same order as the total amount of surf beat energy stored in the surf zone). During storms, shoreward propagation of surf beat maintained surf beat energy in the surf zone. Net surf beat dissipation in the surf zone scaled as predicted by a simple bottom stress parameterization. The inferred dissipation factor for surf beat was 0.08, within the range of wave dissipation factors usually observed in the field and 27–80 times larger than drag coefficients appropriate for the mean longshore current. The observed rapid forcing, rapid dissipation, and shoreward propagation of surf beat are not simulated by existing models of surf beat dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.