Abstract

ABSTRACT Spirals and streamers are the hallmarks of mass accretion during the early stages of star formation. We present the first observations of a large-scale spiral and a streamer towards a very young brown dwarf candidate in its early formation stages. These observations show, for the first time, the influence of external environment that results in asymmetric mass accretion via feeding filaments on to a candidate proto-brown dwarf in the making. The impact of the streamer has produced emission in warm carbon-chain species close to the candidate proto-brown dwarf. Two contrasting scenarios, a pseudo-disc twisted by core rotation and the collision of dense cores, can both explain these structures. The former argues for the presence of a strong magnetic field in brown dwarf formation while the latter suggests that a minimal magnetic field allows large-scale spirals and clumps to form far from the candidate proto-brown dwarf.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.