Abstract

Abstract Using standard visible light microscopy, we are able to observe particle tracks produced by The tracks we observe in CR-39 PNTD irradiated in these experiments are the result of residual heavy recoil fragments returning to equilibrium via evaporation processes following proton-induced knock out of light particles via preequilibrium processes. Because the heavy recoil particles are very near the end of their ranges (i.e. in the Bragg peak), their LET is extremely high and changes rapidly. Consequently, the tracks they produce in CR-39 PNTD often take the form of long tubes rather than the conical etch pits produced by higher energy particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.