Abstract

The shear adhesive force of four non-climbing cockroaches (Blatta orientalis Linnaeus, 1758) was investigated by the use of a centrifugal machine, evaluating the shear safety factor (adhesion force divided by body weight) on six surfaces (steel, aluminium, copper, two sandpapers and a common paper sheet) having different roughness. The adhesive system of Blatta orientalis was characterized by means of a field emission scanning electron microscope and the surface roughness was determined by an atomic force microscope. The cockroach maximum shear safety factor, or apparent friction coefficient, is determined to be 12.1 on the less rough of the two sandpapers, while its minimum value is equal to 1.9 on the steel surface. A two-sample Student t analysis has been conducted in order to evaluate the significance of the differences among the obtained shear safety factors due to both roughness and chemistry. An interesting correlation between cockroach shear adhesion and surface roughness emerges with a threshold mechanism dictated by the competition between claw tip radius and roughness, indicating that the best adhesion is obtained for roughness larger than the claw tip radius.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call