Abstract
Thousands of landslides occurred during the April 2015 Gorkha earthquake in Nepal. Previous work using satellite imagery mapped nearly 25,000 coseismic landslides. In this study, the satellite-based mapping was analyzed in three areas where field deployment was also conducted—the Budhi Gandaki, Trishuli, and Indrawati river valleys—to better characterize the landslides. Unmanned aerial vehicles (UAVs) were deployed to map the three-dimensional (3-D) geometry of failed slopes using photogrammetry, as well as to characterize rock structure and strength. The majority of landslides were rock slides along the ridges and the steeper portions of the basins primarily involving the weathered rock zone. Additional landslides included rock falls and soil failures. Satellite imagery analysis indicated that landsliding was concentrated north of the physiographic transition, in steep areas, and in close proximity to the major rivers. The Trishuli area experienced the lowest landslide density in terms of number of landslides compared to the Budhi Gandaki and Indrawati areas, although all three areas had similar density in terms of total landslide area and other landslide statistics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have