Abstract

Computational decision making is discussed in application to seasonal temperature forecasts taking into account inevitable nonlinear nature of local climate systems and deficiency of data on reliable observations. We focus on temperature extremes in terms of daily means and first involve the alternative conceptual model of local climate dynamics (the model of hysteresis regulation with double synchronization, so-called HDS-model) into such analytics. Recent years the HDS-model is describing successfully abnormal interannual temperature variability, on the basis of which it becomes potentially possible to extend forecasts of local daily means up to more than 1 year in future. In this connection the novel method of bifurcation traps is proposed, realized and tested. Results of processing the time series of temperature observations on daily mean surface air temperature illustrate peculiarities of this method in comparison with the traditional viewpoint on the forecasts. We believe that the discussion could be interesting in science and practice in order to increase the confidence of estimations on coming climate changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.