Abstract

The main purpose of this study is to shed light on the cloud cavitating flow and associated characteristic of pressure fluctuation near wall. A simultaneous sampling technique is used to synchronize the observations of cavitation instantaneous behaviour and the measurements of pressure signals near wall in a convergent-divergent channel. The results show that, a typical quasi-periodical sheet/cloud cavitation can be categorized into three stages: (1) the growth of attached cavity; (2) the shedding of the attached cavity; (3) the development and collapse of the detached cavities. At the stage one, the magnitudes of pressure fluctuation under the attached cavity are limited. However, they become significant in the closure region of attached cavity, especially, when attached cavity reaches its maximum length. At the stage two, the attached cavity begins to shed small detached cavity, leading to the generation of small local pressure fluctuations with higher frequency. At the stage three, a large detached cavity is gradually formed in the rear of the channel. When it collapses rapidly in the downstream, pressure pulses with the magnitudes of the order of several atmospheres are detected. The propagation speeds of pressure pulses in different region are found to be related with the bubble density in the flow field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call