Abstract

We study in detail the power spectra of scalar and tensor perturbations generated during inflation in loop quantum cosmology (LQC). After clarifying in a novel quantitative way how inverse-volume corrections arise in inhomogeneous settings, we show that they can generate large running spectral indices, which generally lead to an enhancement of power at large scales. We provide explicit formulæ for the scalar/tensor power spectra under the slow-roll approximation, by taking into account corrections of order higher than the runnings. Via a standard analysis, we place observational bounds on the inverse-volume quantum correction δ∝a−σ (σ > 0, a is the scale factor) and the slow-roll parameter ϵV for power-law potentials as well as exponential potentials by using the data of WMAP 7yr combined with other observations. We derive the constraints on δ for two pivot wavenumbers k0 for several values of δ. The quadratic potential can be compatible with the data even in the presence of the LQC corrections, but the quartic potential is in tension with observations. We also find that the upper bounds on δ(k0) for given σ and k0 are insensitive to the choice of the inflaton potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.