Abstract
The Kerr spacetime is symmetric with respect to a well-defined equatorial plane. When testing the equatorial reflection symmetry of an isolated black hole, one is at the same time testing the Kerr hypothesis in General Relativity. In this work, we investigate the possible observational features when a Keplerian disk is surrounding a rotating black hole without reflection symmetry. When such symmetry is broken, generically, the photon trajectories around the black hole and the Keplerian orbits on the accretion disk are distorted vertically away from the equatorial plane by an amount that depends on their distance to the black hole. In the reflection asymmetric spacetime we are considering, these two kinds of orbits are distorted in opposite directions. Interestingly, while the size and shape of black hole shadows closely resemble those of Kerr black holes, distinct observational characteristics can emerge in the disk image and emission line profiles. When observing the disk edge-on, a pronounced concave shape may appear along its innermost edge on the incoming side. Furthermore, distinctive horn-like features might be observed on the spectral line profile at the blue-shifted side. These special features can serve as compelling indicators of the reflection asymmetry present in rotating black holes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.