Abstract
The interaction of polarized light with photonic crystals exhibits unique features due to its sub-wavelength nature on the surface and the periodic variation of refractive index in the depth of the crystals. Here, we present a detailed study of polarization anisotropy in light scattering associated with three-dimensional photonic crystals with face centered cubic symmetry over a broad range of wavelength and angle. The polarization anisotropy leads to a shift in the conventional Brewster angle defined for a planar interface with certain refractive index. The observed shift in Brewster angle depends strongly on the index contrast and lattice constant. Polarization-dependent stop gap measurements are performed on photonic crystals with different index contrasts and lattice constants. These measurements indicate unique stop gap branching at high-symmetry points in the Brillouin zone of the photonic crystals. The inherited stop gap branching is observed for TE polarization whereas it is suppressed for TM polarization as a consequence of the Brewster effect. Our results have consequences in the scattering of polarized light from plasmonic structures and dielectric meta-surfaces and are also useful in applications such as nanoscale polarization splitters and lasers.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have