Abstract

A luminescent Si nanocrystal (SiNC) thin film with photoluminescence quantum yield (PLQY) > 70% was made by using hydrogen silsesquioxane (HSQ), followed by long-time high-pressure hydrogenation. A net optical gain of 524 ± 21 cm−1 was obtained by means of variable stripe length-shifting excitation spot (VSL-SES). A rectangularly shaped SiO2 Fabry-Perot (F-P) cavity with size of 1.5 μm (width) × 0.7 μm (height) × 2000 μm (length) was made on top of the SiNC thin film. The waveguide F-P device was pumped with a 400 nm femtosecond pulsed laser. A threshold behavior of the light emission intensity as a function of the pumping power was observed. Other lasing characteristics including spectral narrowing, polarization of the emission, and small emission angle were also observed beyond the threshold pumping power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.