Abstract

Ligand exchange is an advanced technique for tuning the various properties of nanocrystal (NC) thin films, widely used in the NC thin-film device applications. Understanding how the NC thin films transform into functional thin-film devices upon ligand exchange is essential. Here, we investigated the process of structural transformation and accompanying property changes in the NC thin films, by monitoring the various characteristics of silver (Ag) NC thin films at each stage of the ligand-exchange process. A transition state was identified in which the ligands are partially exchanged, where the NC thin films showed unexpected electromechanical features with high gauge factors up to 300. A model system was established to explain the origin of the high gauge factors, supported by the observation of spontaneously formed nanocracks and metal-insulator transition from the structural analysis and charge transport study, respectively. Taking advantages of the unique electromechanical properties of the NC thin films, we fabricated flexible strain gauge sensor devices with high sensitivity, reliability, and stability. We introduce a one-step fabrication process, namely, "the time- and spatial-selective ligand-exchange process", for the design of low-cost and high-performance wearable sensors that effectively detect human motion, such as finger or neck muscle movement. This study provides a fundamental understanding of the ligand-exchange process in NCs, as well as an insight into the functionalities of the NC thin films for technological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.