Abstract

We report on the experimental observation of vortex cluster shedding from a moving obstacle in an oblate atomic Bose-Einstein condensate. At low obstacle velocities v above a critical value, vortex clusters consisting of two like-sign vortices are generated to form a regular configuration like a von Kármán street, and as v is increased, the shedding pattern becomes irregular with many different kinds of vortex clusters. In particular, we observe that the Stouhal number associated with the shedding frequency exhibits saturation behavior with increasing v. The regular-to-turbulent transition of the vortex cluster shedding reveals remarkable similarities between a superfluid and a classical viscous fluid. Our work opens a new direction for experimental investigations of the superfluid Reynolds number characterizing universal superfluid hydrodynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call