Abstract

We report the first observation of threshold-voltage instability of single-crystal silicon (Si) thin-film transistors (TFTs) that are fabricated on low-temperature flexible plastic substrate. Single-crystal Si of 200-nm thickness is transferred from silicon-on-insulator (SOI) onto an indium-tin-oxide-coated polyethylene terephthalate host substrate after selectively removing the buried-oxide layer from the SOI. TFTs of n-type were then fabricated on the transferred single-crystal Si layer with 1.8-mum thick SU-8-2 epoxy as the gate dielectric layer. It is observed that the threshold voltage (Vth) of these TFTs shifts to higher and lower values under high positive and negative gate-voltage stress, respectively. A logarithmic time-dependence of the Vth shift at high bias stress was clearly indicated. These results suggest that the instability of the threshold voltage of the single-crystal Si TFTs is attributed to the charge trapping in the gate dielectric layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.