Abstract
A systematic spectroscopic study of the dicarbon molecule C2 has important applications in various research fields, such as astrochemistry and combustion. In the short vacuum ultraviolet (VUV) wavelength region, recent theoretical calculations have predicted many absorption band systems of C2, but only few of them have been verified experimentally yet. In this work, we employed a tunable VUV laser radiation source based on the two-photon resonance-enhanced four-wave mixing method and a time-of-flight mass spectrometer to investigate the absorption bands of C2 in the VUV range of 64 000-66 000cm-1. The electronic transition 23Σg-(v')-a3Πu(v″) of C2 has been observed and identified experimentally for the first time. The term value Te for the 23Σg- state is determined to be 66 389.9 ± 0.5cm-1 above the ground state X1Σg+, and the vibrational and rotational constants are also determined. The experimentally measured spectroscopic parameters in this study are in excellent agreement with the theoretical results based on high-level abinitio calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.