Abstract

The structure of a ß′-SiAlON (Si5.6Al0.4O0.4N7.6) has been observed using three generations of unique high resolution microscopes spanning over three decades of development in instrumentation – the Atomic Resolution Microscope (ARM), the One Angstrom Microscope (OAM) and the Transmission Electron Aberration-corrected Microscope (TEAM). The information limits of these microscopes are 0.16, 0.08 and 0.05 nm respectively. Observations along ⟨0 0 0 1⟩ at Scherzer defocus for each microscope demonstrate a drastic increase in structural information. Images taken on TEAM show clearly resolved atomic columns whereas the ARM images were only indirectly related to the structure. Nevertheless, the loss of the six-fold symmetry associated with the O/N and Al/Si substitutions was already visible on images taken on the ARM, and an associated ∼25 pm displacement of the O substituting for N in some of the 2c Wyckoff positions of the SiN unit cell was measured on exit wave reconstructions obtained from through focal series on the OAM. This paper illustrates how progress in instrumentation impacts our analysis and understanding of materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.