Abstract

We report the first observation of a large spin-lifetime anisotropy in bilayer graphene (BLG) fully encapsulated between hexagonal boron nitride. We characterize the out-of-plane (τ_{⊥}) and in-plane (τ_{∥}) spin lifetimes by oblique Hanle spin precession. At 75K and the charge neutrality point (CNP), we observe a strong anisotropy of τ_{⊥}/τ_{∥}=8±2. This value is comparable to graphene-transition-metal-dichalcogenide heterostructures, whereas our high-quality BLG provides with τ_{⊥} up to 9ns, a spin lifetime more than 2 orders of magnitude larger. The anisotropy decreases to 3.5±1 at a carrier density of n=6×10^{11} cm^{-2}. Temperature-dependent measurements show above 75K a decrease of τ_{⊥}/τ_{∥} with increasing temperature, reaching the isotropic case close to room temperature. We explain our findings with electric-field-induced spin-valley coupling arising from the small intrinsic spin-orbit fields in BLG of 12 μeV at the CNP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.