Abstract

: Pore spaces and microcracks in representative oil, gas and geothermal reservoir rocks from the Green Tuff region, Japan, were examined using a fluorescent technique. This technique was developed to visualize microscopically pore spaces and microcracks filled with synthetic resin mixed with fluorescent paint under ultraviolet light. Various morphology of pore spaces and microcracks was clearly identified. Spaces in studied reservoir rocks are classified into following three types: pore spaces in matrix, pore spaces in particles, and microcracks. It is observed that valuable oil and gas reservoir rocks relatively include many pore spaces, while microcracks are important for geothermal rocks. Correlation between textural characteristics and porosity or permeability was found in the oil reservoir rocks. Effective permeability depends upon pore spaces in matrix more than upon other components such as pore spaces in particles and microcracks. Looseness in matrix caused by larger grain size of particles is strongly correlated with permeability. Pore spaces play an important role as a reservoir in oil and gas fields, but are less important in geothermal field. Instead, microcracks are important for geothermal reservoir system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call