Abstract
We report on the theoretical models of the plasmoincs Talbot effect in graphene nanostructure. The Talbot effect for the plasmonics applications in the IR range is theoretically studied and the respective Talbot effect for the novel advanced plasmonics structures are numerically investigated for the first time. It is shown that the metamaterial structures with periodic grating configuration represents a complex three-dimensional lattice of beamlet-like graphene plasmonics devices. The calculated results agree well with the experimental ones. The results obtained can be used to create and optimize the structures considering diffraction limit for a wide range of application areas. Effective focusing of plasmonic waves with exact focal spots and a subwavelength full width at half maximum can be obtained by using periodic graphene grating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.